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etc.) required too many gates to comply with Noisy Intermediate-Scale Quan- Kerbosch, and OpenFermion. These achieve 30X+ lower measurement cost, but our transpilation and circuit DeIen I SSmaton 00 tore SR on PR20
tum (NISQ) hardware. To comply with NISQ constraints, a new paradigm of vari- transpilation runtime is expensive, motivating us to study the structure of terms. synthesis by executing on an PO
ational algorithms has emerged, for instance VQE (Variational Quantum Eigen- IBM 20-qubit device. We 10] - l.
solver, "killer app" for chemistry). Linear-Time Transpilation measured the ground state o J
The catch: variational algorithms require too many measurements, e.g. O(N*). Molecular chem. terms have structure: energy of det;teronhand found § s -, A‘
Naively, each measurement requires a fresh quantum execution. However, it was (1) Terms arise in 16-tuplets with error of 835 keV when N e
observed that certain measurements could be executed simultaneously. MIN-CLIQUE-COVER of two. grouping for ‘?mlullg/arl]eous " . e b4
o measurement—11% lower than 4 Naive " maw X
We show that simultaneous measurement leads to a 30X+ reduction in measure- (bz) Terrr;ls ?r'sj .'”tquda'd.“{pietsr;fhjt lcaﬂ separate measurements. = R
ment cost (in fact, an asymptotic reduction). Our work includes efficient transpi- € paraliclized Into disjoint schedules. S A 3 3
lation, circuit synthesis, experimental validation, and statistical analysis. This structure yields N-sized cliques in . x = x
. . These results will scale 2 . .
linear time—reduces measurement cost 5 aat - : T
. from O(N) to O(N) favorably for larger problem T U P R LI
Slmul‘taneous Measurement ) Figure 3: JW encoding yields 16 terms. instances and better hardware, o -_3 bl _2‘ - " ; . 2 -
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Quantum computing deals with N-character terms called Pauli strings, which Results improve reduction factor in Figure 7: 11% lower average error with simultaneous mea-
have regex representation (I[X|Y|Z2){N}, for example YIXIZ or ZXYZZ for N = 5. , measurement cost. surement on IBM 20-qubit device with 100 shot budget.
The I, X, Y, and Z strings represent the Pauli matrices in quantum mechanics. 20 8%33 : B";EQWEZVC
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Terms can be measured simultaneously @ " 2
iff they commute. For N = 1’ the i : Simultaneous measurement introduces Empirical difference in Var(k=2) vs. Var(k=3) under state [01>
commutation rule is that | commutes §m 10 covariance terms. Under pathological 4 —~ True theoretical difference
with everything and (X, Y, Z) only 1 conditions, these covariances can make
commute with themselves. : o W % < % % simultaneous measurement worse (higher i
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Figure 1: Commutation graph for N = 1. Figure 4: Measurement reduction (higher is better). Figure 5: Transpilation runtime (lower is better). I’T(])e(’;S\L/Jiglf]ﬂne%et [Mi%feealjr]a;i :I 15] We ﬁz
For N > 1, the simplest rule is Qubit-Wise Commutativity (QWC): two terms resolve this difficulty by showing: 5
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’ measurement is always better. ° 0 umberof observations
SimUHIaheOUS msasuremeg[COf QWC Ail:::itth-m{f’»:}cirzzix;zz:zg::;?:?;x::z::; (2) the sample covariance matrices allow Figure 8: Sample covariances converge to
Graph Representation and Grouping groups Is casy. OWeVer, ) grOUp output : Cil"cly.litforsimullaneous measurement of {F;} us to adapﬁ\/el\/ course-correct their t lue in iust a f b G
measurement requires specialized M€ EN o basisof () eir true value in just a few observations.
We seek to transpile VQE instances by circuits. We developed a circuit Gt e inse X Tt osing CHOT s SWAP gotes
grouping the terms into sets that can be synthesis tool, based on the f“"g’;fe e e e eomnesmonding qubit Future Work
() (2) ® simultaneously measured. In the stabilizer formalism of quantum end ' .
@ commutation graph, we seek errOLCO.rr¢Chon' Critically, the f“";‘_’zl”e;f:,’l'fiflbfl’.‘;:a"’;ﬁ;"gfﬁfﬁxfc“’;qnm; Further experimental realizations of our methods will be promising, particularly
@ MIN-CLIQUE-COVER: synthesis is very fast, based on o as our results scale favorably. We also propose research towards optimization of
o T to each qubit; . . . .
: 7 - Cliques, because all terms in a clique computations on 2N by N matrices. Monsare cach qubit; simultaneous measurement circuits (e.g. gate cancellation).
@@ @ & can be measured simultaneously. Recently, others observed that our techniques could also apply to algorithms for
P = Cover, because we want to measure machine learning and dynamics simulation [Sweke et al. 2019]. Understanding
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Figure 2: MIN-CLIQUE-COVER for Hj. underlying structure among the terms. Figure 6: Simultaneous measurement circuit generated by our software for the green 8-clique in Figure 3.

all of the terms. the commutativity structure in these algorithms would be fruitful.
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