Minimizing State Preparations for VQE

Pranav Gokhale¹, Olivia Angiuli², Yongshan Ding¹, Kaiwen Gui¹, Teague Tomesh³, Margaret Martonosi³, Frederic T. Chong¹

> ¹University of Chicago ²UC Berkeley ³Princeton University EPiQC: Enabling Practical-scale Quantum Computation

> > QRE 2019, June 22

Minimizing State Preparations for VQE

Results

QRE 2019, June 22 2 / 26

э

• Important problem in chemistry: what is ground state energy of a molecule?

3

くほと くほと くほと

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H |\psi_{\min}\rangle = E_{\min} |\psi_{\min}\rangle$.

・ 同 ト ・ 三 ト ・ 三 ト

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H |\psi_{\min}\rangle = E_{\min} |\psi_{\min}\rangle$.
- Classically, diagonalize exponentially-sized matrix.

・ 同 ト ・ 三 ト ・ 三 ト

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H |\psi_{\min}\rangle = E_{\min} |\psi_{\min}\rangle$.
- Classically, diagonalize exponentially-sized matrix.
- Quantum Phase Estimation algorithm showed how to solve in poly-time.

くほと くほと くほと

Invented in 2014, suitable for near-term/NISQ quantum.

3

∃ → (∃ →

< 4 → <

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method $\forall |\psi\rangle$, $\langle \psi | H | \psi \rangle$ is an overestimate of the lowest eigenvalue (energy).

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method $\forall |\psi\rangle$, $\langle \psi | H | \psi \rangle$ is an overestimate of the lowest eigenvalue (energy).

Algorithm:

4 Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method $\forall |\psi\rangle$, $\langle \psi | H | \psi \rangle$ is an overestimate of the lowest eigenvalue (energy).

Algorithm:

- **4** Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
- **2** Check. Measure $\langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$.

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method $\forall |\psi\rangle$, $\langle \psi | H | \psi \rangle$ is an overestimate of the lowest eigenvalue (energy).

Algorithm:

- **4** Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
- **2** Check. Measure $\langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$.
- **Solution Repeat**. Optimizer on classical co-processor guides next $\vec{\theta}$, with aim of minimizing $\langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$.

Invented in 2014, suitable for near-term/NISQ quantum

Variational Method $\forall |\psi\rangle$, $\langle \psi | H | \psi \rangle$ is an overestimate of the lowest eigenvalue (energy).

Algorithm:

- **0** Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
- **Check**. Measure $\langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$. Our resource estimation & minimization focus.
- **Solution Repeat**. Optimizer on classical co-processor guides next $\vec{\theta}$, with aim of minimizing $\langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$.

- 31

・ 同 ト ・ 三 ト ・ 三 ト

• $\langle H \rangle$ cannot be measured directly on a quantum computer.

- $\langle H \rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.

- 31

(日) (周) (三) (三)

- $\langle H \rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H \rangle = \langle ZI \rangle + \langle IZ \rangle + \langle ZZ \rangle \langle XX \rangle \langle YY \rangle$.

- $\langle H \rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H \rangle = \langle ZI \rangle + \langle IZ \rangle + \langle ZZ \rangle \langle XX \rangle \langle YY \rangle$.
- The number of Pauli Strings scales as N^4

- - - E - N

A 🕨 🔺

- $\langle H \rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H \rangle = \langle ZI \rangle + \langle IZ \rangle + \langle ZZ \rangle \langle XX \rangle \langle YY \rangle$.
- The number of Pauli Strings scales as N^4

• Original VQE formulation, measure each term separately. Each measurement requires separate state preparation.

- $\langle H \rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H \rangle = \langle ZI \rangle + \langle IZ \rangle + \langle ZZ \rangle \langle XX \rangle \langle YY \rangle$.
- The number of Pauli Strings scales as N^4

- Original VQE formulation, measure each term separately. Each measurement requires separate state preparation.
- But, commuting terms can be measured simultaneously.

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 6 / 26

Our Contributions

• Analysis of commutativity

(日) (同) (三) (三)

3

- Analysis of commutativity
 - When do terms commute? What types of commutation relationships?

3

∃ → (∃ →

< 4 → <

- Analysis of commutativity
 - When do terms commute? What types of commutation relationships?
 - How to simultaneously measure?

3

< 回 > < 三 > < 三 >

- Analysis of commutativity
 - When do terms commute? What types of commutation relationships?
 - How to simultaneously measure?
 - How to group terms into large commuting families?

∃ → (∃ →

- Analysis of commutativity
 - When do terms commute? What types of commutation relationships?
 - How to simultaneously measure?
 - How to group terms into large commuting families?
- Impact on variance and study of covariances

- Analysis of commutativity
 - When do terms commute? What types of commutation relationships?
 - How to simultaneously measure?
 - How to group terms into large commuting families?
- Impact on variance and study of covariances
- Benchmarking & resource estimation for representative molecules

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 8 / 26

3

<ロ> (日) (日) (日) (日) (日)

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

-

A 🖓 h

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

For Pauli matrices, $P = \{I, X, Y, Z\}$:

• *I* commutes with everything. [I, *] = 0

3

∃ → (∃ →

A 🖓 h

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

For Pauli matrices, $P = \{I, X, Y, Z\}$:

- *I* commutes with everything. [I, *] = 0
- Everything commutes with itself. [*,*] = 0

3

A D A D A D A

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

For Pauli matrices, $P = \{I, X, Y, Z\}$:

- *I* commutes with everything. [I, *] = 0
- Everything commutes with itself. [*,*] = 0
- Other Pauli commutators follow from cyclic multiplication property.:

・ 同 ト ・ 三 ト ・ 三 ト

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

For Pauli matrices, $P = \{I, X, Y, Z\}$:

- I commutes with everything. [I, *] = 0
- Everything commutes with itself. [*,*] = 0
- Other Pauli commutators follow from cyclic multiplication property.:

•
$$YZ = iX$$

$$\blacktriangleright$$
 ZX = iY

・ 同 ト ・ 三 ト ・ 三 ト

Commutator Notation

$$[A, B] = AB - BA \begin{cases} = 0 & \text{if } A \text{ and } B \text{ commute} \\ \neq 0 & \text{if } A \text{ and } B \text{ do not commute} \end{cases}$$

For Pauli matrices, $P = \{I, X, Y, Z\}$:

- I commutes with everything. [I, *] = 0
- Everything commutes with itself. [*,*] = 0
- Other Pauli commutators follow from cyclic multiplication property.:

$$\bullet XY = iZ = -YX$$

$$\blacktriangleright YZ = iX = -ZY$$

•
$$ZX = iY = -XZ$$

3

A D A D A D A

Consider two *N*-qubit Pauli Strings, *A* and *B*, $\in \{I, X, Y, Z\}^{\otimes N}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 31

Consider two *N*-qubit Pauli Strings, *A* and *B*, $\in \{I, X, Y, Z\}^{\otimes N}$.

Definition: QWC A and B QWC iff $[A_i, B_i] = 0 \forall i$

Consider two *N*-qubit Pauli Strings, *A* and *B*, $\in \{I, X, Y, Z\}^{\otimes N}$.

Definition: QWC A and B QWC iff $[A_i, B_i] = 0 \ \forall i$

Examples

10 / 26

イロト イポト イヨト イヨト 二日

Consider two *N*-qubit Pauli Strings, *A* and *B*, $\in \{I, X, Y, Z\}^{\otimes N}$.

A and B QWC iff $[A_i, B_i] = 0 \ \forall i$ Examples QWC: X Y Z Y I Y T Y Z T T T Not QWC: X Y Z Y I Y I Y Z X I I

Definition: QWC

Minimizing State Preparations for VQE

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの QRE 2019, June 22

10 / 26
Consider terms matching (I or Z)(I or X)(I or Z):

- 31

11 / 26

(日) (周) (三) (三)

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι
Ι	Ι	Ζ
Ι	Х	Ι
Ι	Х	Ζ
Ζ	Ι	Ι
Ζ	Ι	Ζ
Ζ	Х	Ι
Ζ	Х	Ζ

(日) (周) (三) (三)

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι
Ι	Ι	Ζ
Ι	Х	Ι
Ι	Х	Ζ
Ζ	Ι	Ι
Ζ	Ι	Ζ
Ζ	Х	Ι
Ζ	Х	Ζ

(日) (周) (三) (三)

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι	
Ι	Ι	Ζ	These terms are a QWC family.
Ι	Х	Ι	Measure in:
Ι	Х	Ζ	• Z basis for 1st qubit
Ζ	Ι	Ι	
Ζ	Ι	Ζ	
Ζ	Х	Ι	
Ζ	Х	Ζ	

(日) (周) (三) (三)

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι	
Ι	Ι	Ζ	These terms are a QWC family.
Ι	Х	Ι	Measure in:
Ι	Х	Ζ	• Z basis for 1st qubit
Ζ	Ι	Ι	
Ζ	Ι	Ζ	• X basis for 2nd qubit
Ζ	Х	Ι	
Ζ	Х	Ζ	

QRE 2019, June 22

(日) (周) (三) (三)

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι	
Ι	Ι	Ζ	These terms are a QWC family.
Ι	Х	Ι	Measure in:
Ι	Х	Ζ	• Z basis for 1st qubit
Ζ	Ι	Ι	
Ζ	Ι	Ζ	• X basis for 2nd qubit
Ζ	Х	Ι	 Z basis for 3rd qubit
Ζ	Х	Ζ	

Consider terms matching (I or Z)(I or X)(I or Z):

Ι	Ι	Ι	
Ι	Ι	Ζ	These terms are a QWC family.
Ι	Х	Ι	Measure in:
Ι	Х	Ζ	• Z basis for 1st gubit
Ζ	Ι	Ι	X havis for Only hit
Ζ	Ι	Ζ	A basis for 2nd qubit
Ζ	Х	Ι	 Z basis for 3rd qubit
Ζ	Х	Ζ	

In general: QWC simultaneous measurements requires O(N) single qubit gates (depth = 1).

11 / 26

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22

- 21

12 / 26

Is there life beyond QWC? Yes!

3

イロト イポト イヨト イヨト

Is there life beyond QWC? Yes!

Example		
X Y Z	are a commuting family! But not QWC.	

3

12 / 26

< 回 > < 三 > < 三 >

Is there life beyond QWC? Yes!

Example		
	X X Y Y are a commutir Z Z	ig family! But not QWC.

General Commutativity of Pauli Strings

If an even number of indices don't commute, then A and B commute.

Is there life beyond QWC? Yes!

Example		
	X X Y Y Z Z	are a commuting family! But not QWC.

General Commutativity of Pauli Strings

If an even number of indices don't commute, then A and B commute. Proof: All Pauli strings are either commuting or anti-commuting, so we know that either AB = BA or AB = -BA. Each commuting index multiplies by +1, each non-commuting index multiplies by -1. Need even number of non-commuting indices to have a total +1.

Steps

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 13 / 26

Steps

• Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨ZI, IZ⟩ → ⟨XX, ZZ⟩ via rules of Clifford Algebra

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨*ZI*, *IZ*⟩ → ⟨*XX*, *ZZ*⟩ via rules of Clifford Algebra

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨ZI, IZ⟩ → ⟨XX, ZZ⟩ via rules of Clifford Algebra

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨*ZI*, *IZ*⟩ → ⟨*XX*, *ZZ*⟩ via rules of Clifford Algebra
- Apply O(N²) gates from resulting circuit (our software gives explicit circuit decomposition):

14 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨*ZI*, *IZ*⟩ → ⟨*XX*, *ZZ*⟩ via rules of Clifford Algebra
- Apply O(N²) gates from resulting circuit (our software gives explicit circuit decomposition):
- Result: Bell Basis Measurement for this example

・ 同 ト ・ ヨ ト ・ ヨ ト

Steps

- Find stabilizer generators of commuting term group: $\{XX, YY, ZZ\} \rightarrow \langle XX, ZZ \rangle$
- **②** Transform from computational basis generators to new generators ⟨ZI, IZ⟩ → ⟨XX, ZZ⟩ via rules of Clifford Algebra
- Apply O(N²) gates from resulting circuit (our software gives explicit circuit decomposition):
- Result: Bell Basis Measurement for this example

 $O(N^2)$ gates is fine, because UCCSD ansatz prep is $O(N^3)$ or $O(N^4)$.

14 / 26

Commutativity is not transitive-complicates grouping.

3

15 / 26

- 4 目 ト - 4 日 ト - 4 日 ト

Commutativity is not transitive-complicates grouping.

Minimizing State Preparations for VQE

3

15 / 26

Commutativity is not transitive-complicates grouping.

We seek MIN-CLIQUE-COVER.

3

Commutativity is not transitive-complicates grouping.

We seek MIN-CLIQUE-COVER.

Problem is NP-Hard, but use heuristics (Boppana-Halldórsson). Note that our problem is also NP-HARD by reduction from MIN-CLIQUE-COVER.

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22

15 / 26

Results: Across Molecules

QRE 2019, June 22

16 / 26

Results: Across Encodings

Results: Across Active Spaces

QRE 2019, June 22

• Create QWCommutativity by transforming Hamiltonian [Bravyi 2017].

(日) (周) (三) (三)

3

• Create QWCommutativity by transforming Hamiltonian [Bravyi 2017].

• In example, three qubits are tapered out of H2 Hamiltonian

19 / 26

Qubit Tapering Results

3) 3

< /⊒ > <

Measurement Statistics¹

The optimal group depends on the ansatz state.

¹Example from [McClean et al 2015]

@EPiQCExpedition

Minimizing State Preparations for VQE

- ∢ ≣ → QRE 2019, June 22

3

21 / 26

Measurement Statistics¹

The optimal group depends on the ansatz state.

Example

Consider H = -XX - YY + ZZ + IZ + ZI, and state $|\psi\rangle = |01\rangle$.

¹Example from [McClean et al 2015]

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 21 / 26

- 31

< 回 ト < 三 ト < 三 ト

Measurement Statistics¹

The optimal group depends on the ansatz state.

Example

Consider H = -XX - YY + ZZ + IZ + ZI, and state $|\psi\rangle = |01\rangle$.

¹Example from [McClean et al 2015]

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 21 / 26

k = 5 Groups

Minimizing State Preparations for VQE

QRE 2019, June 22

k = 5 Groups

$$E(\# \text{ state preps}) = k\left(Var(-XX) + Var(-YY) + Var(ZZ) + Var(ZI) + Var(IZ)\right)/\epsilon^{2}$$
$$= 5\left(1 + 1 + 0 + 0 + 0\right)/\epsilon^{2}$$
$$= 10/\epsilon^{2}$$

Minimizing State Preparations for VQE

Ξ.

k = 3 Groups

Minimizing State Preparations for VQE

QRE 2019, June 22
k = 3 Groups

$$E(\# \text{ state preps})/\epsilon^{2} = k \Big[Var(-XX) + Var(\{-YY, -ZZ\}) + Var(\{ZI, IZ\}) \Big]/\epsilon^{2}$$
$$= k \Big[Var(-XX) + \Big(Var(-YY) + Var(-ZZ) + 2Cov(-YY, -ZZ) \Big) + \Big(Var(ZI) + Var(IZ) + 2Cov(IZ, ZI) \Big) \Big]/\epsilon^{2}$$
$$= 3 \Big[1 + \Big(1 + 0 + 0 \Big) + \Big(0 + 0 + 0 \Big) \Big]/\epsilon^{2} = \boxed{6/\epsilon^{2}}$$

@EPiQCExpedition

Minimizing State Preparations for VQE

QRE 2019, June 22 23 / 26

k = 2 Groups

Minimizing State Preparations for VQE

QRE 2019, June 22

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

k = 2 Groups

$$E(\# \text{ state preps}) = k\left[Var(\{-XX, -YY, ZZ\}) + Var(\{ZI, IZ\})\right]/\epsilon^{2}$$
$$= k\left[\left(Var(-XX) + Var(-YY) + Var(ZZ) + 2Cov(-XX, -YY) + 2Cov(-XX, ZZ) + 2Cov(-YY, ZZ)\right)\right]/\epsilon^{2}$$
$$= 2\left[\left(1 + 1 + 0 + 2 * 1 + 0 + 0\right) + \left(0 + 0 + 0\right)\right]/\epsilon^{2} = 8/\epsilon^{2}$$

QRE 2019, June 22

Optimal Grouping

Bigger k means more state preparations per iteration, but more *independent* looks at data.

3

25 / 26

(日) (周) (三) (三)

Optimal Grouping

Bigger k means more state preparations per iteration, but more *independent* looks at data.

However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to **pick the** largest groups (smallest k).

25 / 26

Bigger k means more state preparations per iteration, but more *independent* looks at data.

However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to **pick the** largest groups (smallest k).

E[Cov(A, B)] = 0 for two commuting Pauli terms-proof via stabilizer foramlism. Thus, on average, all covariances are 0, and state preparations are reduced by lowering k.

25 / 26

< 回 ト < 三 ト < 三 ト

Bigger k means more state preparations per iteration, but more independent looks at data.

However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to **pick the largest groups** (smallest k).

E[Cov(A, B)] = 0 for two commuting Pauli terms-proof via stabilizer foramlism. Thus, on average, all covariances are 0, and state preparations are reduced by lowering k.

Work in progress: adaptively adjust groups after initial grouping.

25 / 26

• Explicitly test on real hardware

(日) (周) (三) (三)

3

- Explicitly test on real hardware
- Benchmark qubit tapering

< 回 > < 三 > < 三 >

3

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances

< 67 ▶

- ∢ ≣ →

3

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances
- More connections to stabilizer formalism?

3) 3

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances
- More connections to stabilizer formalism?

Thanks!

3

26 / 26