Minimizing State Preparations for VQE

Pranav Gokhale ${ }^{1}$, Olivia Angiuli ${ }^{2}$, Yongshan Ding ${ }^{1}$, Kaiwen Gui ${ }^{1}$, Teague Tomesh ${ }^{3}$, Margaret Martonosi ${ }^{3}$, Frederic T. Chong ${ }^{1}$
${ }^{1}$ University of Chicago
${ }^{2}$ UC Berkeley
${ }^{3}$ Princeton University
EPiQC: Enabling Practical-scale Quantum Computation
QRE 2019, June 22

Results

Background: Ground State Estimation

- Important problem in chemistry: what is ground state energy of a molecule?

Background: Ground State Estimation

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.

Background: Ground State Estimation

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H\left|\psi_{\text {min }}\right\rangle=E_{\text {min }}\left|\psi_{\text {min }}\right\rangle$.

Background: Ground State Estimation

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H\left|\psi_{\text {min }}\right\rangle=E_{\text {min }}\left|\psi_{\text {min }}\right\rangle$.
- Classically, diagonalize exponentially-sized matrix.

Background: Ground State Estimation

- Important problem in chemistry: what is ground state energy of a molecule?
- Determine reaction rates, molecular geometry, etc.
- Solving is equivalent to finding the min eigenvalue (min energy) of the Hamiltonian matrix, $H: H\left|\psi_{\text {min }}\right\rangle=E_{\text {min }}\left|\psi_{\text {min }}\right\rangle$.
- Classically, diagonalize exponentially-sized matrix.
- Quantum Phase Estimation algorithm showed how to solve in poly-time.

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method

$\forall|\psi\rangle,\langle\psi| H|\psi\rangle$ is an overestimate of the lowest eigenvalue (energy).

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum.

Variational Method

$\forall|\psi\rangle,\langle\psi| H|\psi\rangle$ is an overestimate of the lowest eigenvalue (energy).
Algorithm:
(1) Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum.

```
Variational Method
\(\forall|\psi\rangle,\langle\psi| H|\psi\rangle\) is an overestimate of the lowest eigenvalue (energy).
```

Algorithm:
(1) Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
(2) Check. Measure $\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle$.

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum.

```
Variational Method
\(\forall|\psi\rangle,\langle\psi| H|\psi\rangle\) is an overestimate of the lowest eigenvalue (energy).
```

Algorithm:
(1) Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
(2) Check. Measure $\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle$.
(3) Repeat. Optimizer on classical co-processor guides next $\vec{\theta}$, with aim of minimizing $\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle$.

Variational Quantum Eigensolver (VQE)

Invented in 2014, suitable for near-term/NISQ quantum

Variational Method

$\forall|\psi\rangle,\langle\psi| H|\psi\rangle$ is an overestimate of the lowest eigenvalue (energy).
Algorithm:
(1) Guess. Prepare an ansatz state, $|\psi(\vec{\theta})\rangle$.
(2) Check. Measure $\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle$. Our resource estimation \& minimization focus.
(3) Repeat. Optimizer on classical co-processor guides next $\vec{\theta}$, with aim of minimizing $\langle\psi(\vec{\theta})| H|\psi(\vec{\theta})\rangle$.

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H\rangle=\langle Z I\rangle+\langle I Z\rangle+\langle Z Z\rangle-\langle X X\rangle-\langle Y Y\rangle$.

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H\rangle=\langle Z I\rangle+\langle I Z\rangle+\langle Z Z\rangle-\langle X X\rangle-\langle Y Y\rangle$.
- The number of Pauli Strings scales as N^{4}

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H\rangle=\langle Z I\rangle+\langle I Z\rangle+\langle Z Z\rangle-\langle X X\rangle-\langle Y Y\rangle$.
- The number of Pauli Strings scales as N^{4}

- Original VQE formulation, measure each term separately. Each measurement requires separate state preparation.

Checking $\langle H\rangle$

- $\langle H\rangle$ cannot be measured directly on a quantum computer.
- Instead, decompose H into lincomb of Pauli Strings $\{I, X, Y, Z\}^{\otimes N}$.
- E.g. $\langle H\rangle=\langle Z I\rangle+\langle I Z\rangle+\langle Z Z\rangle-\langle X X\rangle-\langle Y Y\rangle$.
- The number of Pauli Strings scales as N^{4}

- Original VQE formulation, measure each term separately. Each measurement requires separate state preparation.
- But, commuting terms can be measured simultaneously.

Our Contributions

- Analysis of commutativity

Our Contributions

- Analysis of commutativity
- When do terms commute? What types of commutation relationships?

Our Contributions

- Analysis of commutativity
- When do terms commute? What types of commutation relationships?
- How to simultaneously measure?

Our Contributions

- Analysis of commutativity
- When do terms commute? What types of commutation relationships?
- How to simultaneously measure?
- How to group terms into large commuting families?

Our Contributions

- Analysis of commutativity
- When do terms commute? What types of commutation relationships?
- How to simultaneously measure?
- How to group terms into large commuting families?
- Impact on variance and study of covariances

Our Contributions

- Analysis of commutativity
- When do terms commute? What types of commutation relationships?
- How to simultaneously measure?
- How to group terms into large commuting families?
- Impact on variance and study of covariances
- Benchmarking \& resource estimation for representative molecules

Pauli Commutativity Relations

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$
For Pauli matrices, $P=\{I, X, Y, Z\}$:

- I commutes with everything. $[I, *]=0$

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$
For Pauli matrices, $P=\{I, X, Y, Z\}$:

- I commutes with everything. $[I, *]=0$
- Everything commutes with itself. $[*, *]=0$

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$
For Pauli matrices, $P=\{I, X, Y, Z\}$:

- I commutes with everything. $[I, *]=0$
- Everything commutes with itself. $[*, *]=0$
- Other Pauli commutators follow from cyclic multiplication property.:

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$
For Pauli matrices, $P=\{I, X, Y, Z\}$:

- I commutes with everything. $[I, *]=0$
- Everything commutes with itself. $[*, *]=0$
- Other Pauli commutators follow from cyclic multiplication property.:
- $X Y=i Z$
- $Y Z=i X$
- $Z X=i Y$

Pauli Commutativity Relations

Commutator Notation

$[A, B]=A B-B A \begin{cases}=0 & \text { if } A \text { and } B \text { commute } \\ \neq 0 & \text { if } A \text { and } B \text { do not commute }\end{cases}$
For Pauli matrices, $P=\{I, X, Y, Z\}$:

- I commutes with everything. $[I, *]=0$
- Everything commutes with itself. $[*, *]=0$
- Other Pauli commutators follow from cyclic multiplication property.:
- $X Y=i Z=-Y X$
- $Y Z=i X=-Z Y$
- $Z X=i Y=-X Z$

Qubit-Wise Commutativity (QWC)

Consider two N-qubit Pauli Strings, A and $B, \in\{I, X, Y, Z\}^{\otimes N}$.

Qubit-Wise Commutativity (QWC)

Consider two N-qubit Pauli Strings, A and $B, \in\{I, X, Y, Z\}^{\otimes N}$.
Definition: QWC
A and B QWC iff $\left[A_{i}, B_{i}\right]=0 \forall i$

Qubit-Wise Commutativity (QWC)

Consider two N-qubit Pauli Strings, A and $B, \in\{I, X, Y, Z\}^{\otimes N}$.
Definition: QWC
A and B QWC iff $\left[A_{i}, B_{i}\right]=0 \forall i$

Examples

$$
\text { QWC: } \begin{gathered}
X \\
\text { I Y Z Z Y I I Y } \\
\text { I }
\end{gathered}
$$

Qubit-Wise Commutativity (QWC)

Consider two N-qubit Pauli Strings, A and $B, \in\{I, X, Y, Z\}^{\otimes N}$.
Definition: QWC
A and B QWC iff $\left[A_{i}, B_{i}\right]=0 \forall i$

Examples

$$
\begin{gathered}
\text { QWC: } \left.\begin{array}{cccccc}
X & Y & Z & Y & I & Y \\
I & Y & Z & I & I & I
\end{array} \right\rvert\, \\
\text { Not QWC: } \\
\begin{array}{llllll}
X & Y & Z & Y & I & Y \\
I & Y & Z & X & I & I
\end{array}
\end{gathered}
$$

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

I	I	I
I	I	Z
I	X	I
I	X	Z
Z	I	I
Z	I	Z
Z	X	I
Z	X	Z

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

I	I	I
I	I	Z
I	X	I
I	X	Z
Z	I	I
Z	I	Z
Z	X	I
Z	X	Z

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

I	I	I
I	I	Z
I	X	I
I	X	Z
Z	I	I
Z	I	Z
Z	X	I
Z	X	Z

These terms are a QWC family. Measure in:

- Z basis for 1 st qubit

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

I	I	I
I	I	Z
I	X	I
I	X	Z
Z	I	I
Z	I	Z
Z	X	I
Z	X	Z

These terms are a QWC family. Measure in:

- Z basis for 1 st qubit
- X basis for 2nd qubit

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

I	I	I
I	I	Z
I	X	I
I	X	Z
Z	I	I
Z	I	Z
Z	X	I
Z	X	Z

These terms are a QWC family. Measure in:

- Z basis for 1 st qubit
- X basis for 2nd qubit
- Z basis for 3 rd qubit

Simultaneous QWC Measurement

Consider terms matching (I or Z)(I or X)(I or Z):

$$
\begin{array}{lll}
\text { I } & \text { I } & I \\
\text { I } & I & Z \\
\text { I } & X & I \\
\text { I } & X & Z \\
Z & I & I \\
Z & I & Z \\
Z & X & I \\
Z & X & Z
\end{array}
$$

These terms are a QWC family. Measure in:

- Z basis for 1 st qubit
- X basis for 2nd qubit
- Z basis for 3 rd qubit

In general: QWC simultaneous measurements requires $O(N)$ single qubit gates (depth $=1$).

Full Commutativity

Full Commutativity

Is there life beyond QWC? Yes!

Full Commutativity

Is there life beyond QWC? Yes!
Example

> X X
> Y Y are a commuting family! But not QWC.
> Z Z

Full Commutativity

Is there life beyond QWC? Yes!
Example

```
X X
Y Y are a commuting family! But not QWC.
Z Z
```


General Commutativity of Pauli Strings

If an even number of indices don't commute, then A and B commute.

Full Commutativity

Is there life beyond QWC? Yes!
Example

X X
 Y Y are a commuting family! But not QWC.
 Z Z

General Commutativity of Pauli Strings

If an even number of indices don't commute, then A and B commute. Proof: All Pauli strings are either commuting or anti-commuting, so we know that either $A B=B A$ or $A B=-B A$. Each commuting index multiplies by +1 , each non-commuting index multiplies by -1 . Need even number of non-commuting indices to have a total +1 .

Simultaneous Full Commutativity Measurement

Steps

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group: $\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group: $\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group: $\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra

[Devoret Notes]

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group:
$\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group:
$\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra
(3) Apply $O\left(N^{2}\right)$ gates from resulting circuit (our software gives explicit circuit decomposition):

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group:
$\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra
(3) Apply $O\left(N^{2}\right)$ gates from resulting circuit (our software gives explicit circuit decomposition):
(1) Result: Bell Basis Measurement for this example

Simultaneous Full Commutativity Measurement

Steps

(1) Find stabilizer generators of commuting term group: $\{X X, Y Y, Z Z\} \rightarrow\langle X X, Z Z\rangle$
(2) Transform from computational basis generators to new generators $\langle Z I, I Z\rangle \rightarrow\langle X X, Z Z\rangle$ via rules of Clifford Algebra
(3) Apply $O\left(N^{2}\right)$ gates from resulting circuit (our software gives explicit circuit decomposition):
(9) Result: Bell Basis Measurement for this example
$O\left(N^{2}\right)$ gates is fine, because UCCSD ansatz prep is $O\left(N^{3}\right)$ or $O\left(N^{4}\right)$.

Grouping Commuting Terms

Commutativity is not transitive-complicates grouping.

Grouping Commuting Terms

Commutativity is not transitive-complicates grouping.

Grouping Commuting Terms

Commutativity is not transitive-complicates grouping.

We seek MIN-CLIQUE-COVER.

Grouping Commuting Terms

Commutativity is not transitive-complicates grouping.

We seek MIN-CLIQUE-COVER.
Problem is NP-Hard, but use heuristics (Boppana-Halldórsson). Note that our problem is also NP-HARD by reduction from MIN-CLIQUE-COVER.

Results: Across Molecules

Results: Across Encodings

Term Grouping for H2 (6-31g basis, 8 modes)

Results: Across Active Spaces

Qubit Tapering

- Create QWCommutativity by transforming Hamiltonian [Bravyi 2017].

Qubit Tapering

- Create QWCommutativity by transforming Hamiltonian [Bravyi 2017].

σ_{1}^{z}	σ_{2}^{z}	σ_{3}^{z}	σ_{4}^{z}
$\sigma_{1}^{z} \sigma_{2}^{z}$	$\sigma_{1}^{z} \sigma_{3}^{z}$	$\sigma_{1}^{z} \sigma_{4}^{z}$	
$\sigma_{2}^{z} \sigma_{3}^{z}$	$\sigma_{2}^{z} \sigma_{4}^{z}$	$\sigma_{3}^{z} \sigma_{4}^{z}$	
$\sigma_{1}^{y} \sigma_{2}^{y} \sigma_{3}^{x} \sigma_{4}^{x}$	$\sigma_{1}^{x} \sigma_{2}^{y} \sigma_{3}^{y} \sigma_{4}^{x}$	$\sigma_{1}^{y} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{y}$	$\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{y} \sigma_{4}^{y}$

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}}\left(\sigma_{2}^{x}+\sigma_{1}^{z} \sigma_{2}^{z}\right), \quad U_{2}=\frac{1}{\sqrt{2}}\left(\sigma_{3}^{x}+\sigma_{1}^{z} \sigma_{3}^{z}\right) \\
& \text { and } U_{3}=\frac{1}{\sqrt{2}}\left(\sigma_{4}^{x}+\sigma_{1}^{z} \sigma_{4}^{z}\right)
\end{aligned}
$$

σ_{1}^{z}	$\sigma_{1}^{z} \sigma_{2}^{x}$	$\sigma_{1}^{z} \sigma_{3}^{x}$	$\sigma_{1}^{z} \sigma_{4}^{x}$
σ_{2}^{x}	σ_{3}^{x}	σ_{4}^{x}	
$\sigma_{2}^{x} \sigma_{3}^{x}$	$\sigma_{2}^{x} \sigma_{4}^{x}$	$\sigma_{3}^{x} \sigma_{4}^{x}$	
$\sigma_{1}^{x} \sigma_{3}^{x} \sigma_{4}^{x}$	$\sigma_{1}^{x} \sigma_{4}^{x}$	$\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x}$	$\sigma_{1}^{x} \sigma_{2}^{x}$

- In example, three qubits are tapered out of H2 Hamiltonian

Qubit Tapering Results

Hamiltonian \# of Qubits \# Tapered
 H2 (small \# active spaces) 4
 3
 H2 (large \# active spaces) $8 \quad 2$
 H 2 O
 8
 2

Measurement Statistics ${ }^{1}$

The optimal group depends on the ansatz state.

Measurement Statistics ${ }^{1}$

The optimal group depends on the ansatz state.
Example
Consider $H=-X X-Y Y+Z Z+I Z+Z I$, and state $|\psi\rangle=|01\rangle$.

[^0]
Measurement Statistics ${ }^{1}$

The optimal group depends on the ansatz state.
Example
Consider $H=-X X-Y Y+Z Z+I Z+Z I$, and state $|\psi\rangle=|01\rangle$.

${ }^{1}$ Example from [McClean et al 2015]

$k=5$ Groups

$k=5$ Groups

$$
\begin{array}{r}
E(\# \text { state preps })= \\
k(\operatorname{Var}(-X X)+\operatorname{Var}(-Y Y)+\operatorname{Var}(Z Z)+\operatorname{Var}(Z I)+\operatorname{Var}(I Z)) / \epsilon^{2} \\
=5(1+1+0+0+0) / \epsilon^{2} \\
=10 / \epsilon^{2}
\end{array}
$$

$k=3$ Groups

$k=3$ Groups

$$
\begin{array}{r}
E(\# \text { state preps }) / \epsilon^{2}= \\
k[\operatorname{Var}(-X X)+\operatorname{Var}(\{-Y Y,-Z Z\})+\operatorname{Var}(\{Z I, I Z\})] / \epsilon^{2} \\
=k[\operatorname{Var}(-X X)+(\operatorname{Var}(-Y Y)+\operatorname{Var}(-Z Z)+2 \operatorname{Cov}(-Y Y,-Z Z)) \\
+(\operatorname{Var}(Z I)+\operatorname{Var}(I Z)+2 \operatorname{Cov}(I Z, Z I))] / \epsilon^{2} \\
=3[1+(1+0+0)+(0+0+0)] / \epsilon^{2}=6 / \epsilon^{2}
\end{array}
$$

$k=2$ Groups

$k=2$ Groups

$$
\begin{array}{r}
E(\# \text { state preps })= \\
k[\operatorname{Var}(\{-X X,-Y Y, Z Z\})+\operatorname{Var}(\{Z I, I Z\})] / \epsilon^{2} \\
=k[(\operatorname{Var}(-X X)+\operatorname{Var}(-Y Y)+\operatorname{Var}(Z Z)+ \\
2 \operatorname{Cov}(-X X,-Y Y)+2 \operatorname{Cov}(-X X, Z Z)+2 \operatorname{Cov}(-Y Y, Z Z)) \\
(\operatorname{Var}(Z I)+\operatorname{Var}(I Z)+2 \operatorname{Cov}(I Z, Z I))] / \epsilon^{2} \\
=2[(1+1+0+2 * 1+0+0)+(0+0+0)] / \epsilon^{2}=8 / \epsilon^{2}
\end{array}
$$

Optimal Grouping

Bigger k means more state preparations per iteration, but more independent looks at data.

Optimal Grouping

Bigger k means more state preparations per iteration, but more independent looks at data.
However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to pick the largest groups (smallest k).

Optimal Grouping

Bigger k means more state preparations per iteration, but more independent looks at data.
However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to pick the largest groups (smallest k).
$E[\operatorname{Cov}(A, B)]=0$ for two commuting Pauli terms-proof via stabilizer foramlism. Thus, on average, all covariances are 0 , and state preparations are reduced by lowering k.

Optimal Grouping

Bigger k means more state preparations per iteration, but more independent looks at data.
However:

Optimal Initial Grouping

With no prior on the ansatz state $|\psi\rangle$, optimal strategy is to pick the largest groups (smallest k).
$E[\operatorname{Cov}(A, B)]=0$ for two commuting Pauli terms-proof via stabilizer foramlism. Thus, on average, all covariances are 0 , and state preparations are reduced by lowering k.

Work in progress: adaptively adjust groups after initial grouping.

Next Steps

- Explicitly test on real hardware

Next Steps

- Explicitly test on real hardware
- Benchmark qubit tapering

Next Steps

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances

Next Steps

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances
- More connections to stabilizer formalism?

Next Steps

- Explicitly test on real hardware
- Benchmark qubit tapering
- Develop adaptive regrouping strategy in light of covariances
- More connections to stabilizer formalism?

Thanks!

[^0]: ${ }^{1}$ Example from [McClean et al 2015]

